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The feasibility of solid state cells based upon lithium ion conducting
polymer electrolytes has been demonstrated. In the present paper a
preliminary investigation of sodium and magnesium ion conductors in
polymer electrolyte cells is summarized. Cell types were Li/V6 013,
Na/V,0 13, and Mg/V60 3 with polymer electrolytes based on polyethylene
oxide and salts of the anode element.
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1. INTRODUCTION

Polymer electrolytes have been widely investigated over the last ten

years because of their potential use in high energy density solid state

batteries. Polyethylene oxide (PEO) has been the most extensively studied

polymer. It was found that PEO doped with a lithium salt such as LiCF3SO3

could give conductivity values of about 10"(Ocm)-' at 100"C[l]. Cells

utilizing the monovalent salt-polymer electrolyte, lithium anodes and

cathodes based on insertion compounds such as V.013 have demonstrated good

cycling and good reversibility at 100"C.

These encouraging results have led to the investigations of other

alkali ion systems such as those based on sodium ion conduction. For

example, West et al., [2], reported a Na/MoS3 cell using (PEO)10-NaI as

the electrolyte at 90"C. Worrell et al. reported on a cell Na/TiS2 , that

was operated with PE04,5 -NaSCN electrolyte at 80"C [3].

Although exploratory research has also been made on divalent salt

systems such as Mg + , Ca2 , Pb2", Zn2  and Cu2+ [4-8], little attention

has been given to these electrolytes in the studies of solid state

batteries. The only report to date has been made by Patrick et al. [8] on

a primary Mg/TiS. cell using (PEO)15.Mg(SCN)2 as the electrolyte at room

temperature.

MIM The present paper describes the possibility of using V.013 as the

cathode in sodium and magnesium cells and compares the results (where

possible) to the performance of lithium cells. The major limitations

associated with these cells are also discussed.



2. EPIMIA

Lithium, sodium and magnesium were chosen as the anode material and

V.0,3 as the cathode. The technique for preparing the lithium based

polymer electrolyte (PEO)e.LiCF3SO3 has been described elsewhere [9]. The

sodium ion conductors, (PEO)10.NaI, (PEO)10*NaBr and (PEO)1 0.NaCF3SO3 and

the magnesium ion conductors, (PEO),.MgCl, and (PEO),.Mg(ClO) 2 were

prepared as follows.

Polyethylene oxide (Polyscience, MW-5xlO), was dissolved in the

appropriate amount of acetonitrile. The salts, Nal, NaBr, NaCF3SO3, MgCl2

and Mg(C1O) 2 were dissolved in the appropriate amount of anhydrous

ethanol separately. Each salt solution was mixed with a PEO solution with

constant stirring. Once homogenized, the mixture was cast on a PTFE sheet

using a doctor blade technique. Using this method, thin films of 15 to 35

-m polymer electrolytes were obtained.

The cathode was prepared by a complex mixing process involving

V.013(80 w/o), PEO (15 w/o) and Shawinigan carbon black (5 w/o).

A thin, flat sodium electrode was made by placing a piece of sodium

on a thin stainless steel surface, covering this with polymer film and

compressing the electrode between two glass-slides. Once thin enough, the

polymer film was removed from the sodium remaining on the stainless steel

current collector. Finally a scalpel blade was used to remove excess

sodium and to ensure a smooth, oxide-free surface. The thickness of the

sodium film prepared by this means was about 30 Am.

The lithium electrode was obtained as a thin foil (thickness 55 Am)

and used with no further treatment. The magnesium electrode was also

I ""! "1....' ' " I : " ! '! H.,r: . WI . , ,, . ,Ban.



obtained as a thin foil (thickness 125pm) and after cleaning the surface,

the final thickness was about 25 Am.

Cells were assembled as shown in Figure 1. The diameter of the

electrolyte was 1 cm. Adhesive tape (thickness - 50 pm) was used as the

spacer to separate the two electrodes. All the electrolytes were vacuum-

dried after casting and stored in an argon atmosphere glove-box for two

weeks prior to use. The cell assembly was also carried out in the glove

box. Once sealed with epoxy, the cells were tested outside the glove box.

Sodium cells were tested at 90C and lithium and magnesium cells at 100'C.

3. RESULTS AND DISCUSSIONS

The initial open circuit voltages (OCV) of the experimental cells are

listed in Table 1. The cells, Na (PEO) 1 0 .NaBrlV,0 13 and

NaI(PEO) 1 0 .NaCF 3SO3 V6 013 show an OCV of about 3.1 V at 90C. In contrast

the Nal(PEO) 1 0oNaI V6 013 cell has an OCV of only 2.76V at 90C. This

value is close to the Nall, cell which has an OCV of 2.8 V or 2.9 V,

obtained from the free energy of formation of NaI() or NaI(s)[10]. This

suggests the possibility of a reaction between the NaI and the V.0,3. Two

possible reaction schemes are:

xNaI + V6 013 + xC NaOV601 3 + xI-C (1)

xNaI + V6013 --- + x/2 I + NaV 6013  (2)

Reaction (1) occurs with the adsorption of iodine on the carbon surface

and (2) occurs with the liberation of free iodine. In any case both

reactions would contribute to a lowering of the OCV.

Both magnesium cells demonstrated an OCV of 2.0 V at 100C whereas

the lithium cell value was greater than 3.2V. The lithium cell was

"I
-
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the most extensively studied system in our investigation. Figure 2 shows

the performance of LiI(PEO),-LiCF3SO31V60 3 at three discharge rates. The

charging was carried out at constant potential using a limiting resistor

in series with the circuit to control the current. At the C/5 rate over a

hundred cycles was obtained with greater than 35% of the theoretical

capacity (8Li/V6013). Figure 3 shows the load voltage of the cell against

utilization of V.01 3. It is seen that greater than 80% of the theoretical

capacity is possible at the C/10 and C/20 rates.

Figure 2 also shows a NaI(PEO)1 0.NaIIV,013 cell operating at the C/4

rate. The cell appears to cycle with constant capacity but is limited to

only one Na per V.013 between the voltage limits of 2.8 V and 1.5 V. A

typical charge-discharge curve for the Nal(PEO) 0.NaIIVO 13 cell is shown

in Figure 4. The initial stages of discharge appears to be flatter than

the latter stages which shows a rapid decline in capacity. The first part

is attributed to the reaction of I. as shown in sequences (1) and (2)

above and the second part to a combination of sodium intercalation with

V.013 and 12 reaction. During charge the cell potential exceeds 2.8 V

when a 51 pA/cm2 charge current is applied. This sudden increase suggests

that the intercalation of Na into V.013 may not be as reversible as Li.

Cyclic voltammetry results on the sodium cells are shown in Figure 5a

and 5b. For NaI(PEO)1 0.NaIIV6 01,, the curve (Figure 5a) shows a distinct

inflection at 2.8 V. This is normally representative of a reaction

involving

Na + 1/2 12 - NaI (3)

rather than an intercalation reaction (xNa + V6013  - NaV 60 13). A

typical intercalation curve was found in the NaI(PEO)I0.NaCF 3SO31V6 013



cell (Figure 5b). This does not show a distinct inflection corresponding

to a single reaction but rather a series of reactions.

Due to the low ionic conductivity of the (PEO) 10.NaBr electrolyte,

the corresponding cyclic voltammetry curve for the Na(PEO) 0.NaBrIV 6013

cell exhibited much lower currents (by a factor of 0.001). The curve was

representative of a high resistance cell associated with a large iR drop.

In contrast the currents were about four times higher in the

NaI(PEO) 1 o-NaI V,0 3 cell than in the NaI(PEO) O. NaCF 3SO 3IV.0 13 cell.

Furthermore the latter cell demonstrated an order of magnitude increase in

the cell internal resistance upon storage for one day at 90"C. This

increase in resistance with time was not observed in the other sodium

cells. Previous work [11] on the lithium system has demonstrated that

LiCF 3SO3 is not thermodynamically stable with lithium metal. The metal

is, however, protected by a passive film formed by a reaction involving

the lithium and LiCF3SO3. It is envisaged that NaCF3SO3 is also not

thermodynamically stable with sodium metal. However, in this case, the

protective film appears to be less protective and less ionically

conducting than the film on lithium metal. This gives rise to a large

build-up of the passive layer which subsequently results in an increase in

the interfacial resistance and hence an increase in the observed cell

impedance with time.

The cyclic voltammetry curves for the magnesium electrode against a

magnesium reference electrode in cells of the type Mgl(PEO),.MgCI 2 IV0 13

and Mgf(PEO),.Kg(Cl0O) 2jV,013 are shown in Figure 6a and 6b. In either

case the anodic currents are considerably higher than the corresponding

cathodic currents. Furthermore the anodic current in the forward

potential sweep is less than the anodic current in the backward sweep. In



the forward sweep, the potential of the magnesium electrode increases with

a corresponding increase in the slope of the curve. This phenomena does

not occur in the backward potential sweep. This clearly suggests the

formation of a passive layer on the magnesium electrode surface and,

hence, the need to activate the magnesium electrode at a certain

potential. However, as the passive film grows with time, the required

activation potential increases.

This passivation phenomena can also be confirmed from the voltage

delay observed in the constant current discharge curves of the magnesium

cells (Figure 7a and 7b). The constant current charge curve shows a poor

rechargeability of the magnesium electrodes in both cells.

The cyclic voltammetry curve (Fig. 8) for the V6013 electrode against

a magnesium reference electrode in cells of the type

Mgj(PEO) 8 oMg(ClO4 ) 2 1V6O13 does suggest some reversibility of magnesium

intercalation in V6013 . The current output in this case is larger than

that observed for the magnesium working electrodes.

CONCLUSION

The lithium polymer electrolyte battery system is thus far the best

candidate that exhibits good cycling and good reversibility with cathodes

such as V013 .

Preliminary investigation suggests that the cell NaI(PEO)10.NaIIV 6013

behaves as a Nail 2 cell with an OCV of 2.8V rather than as a Na!V 6013 cell

which would have an OCV of 3.lV at 90"C. In addition, passivation in the

NaI(PEO) 0 -NaCF 3SO3 1VO0 3 cell and low ionic conductivity of the

(PEO) 10 .NaBr electrolyte severely limits the performance of this system.

The magnesium system is limited by the magnesium electrode rather

than the cathode. Further work is continuing to confirm some of the



above observations and to investigate other electrode couples for solid-

state polymer-electrolyte batteries.
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TABLE 1. INITIAL OCV OF POLYMER ELECTROLYTE CELLS

OCV (V) T(C)

Li/PEOSLiCF3 SO3/VO2 13  3.2 100

Na/PE010 *N&I/VS013  2.76 90

Na/PE01 0 , NaBr/V,0 13  3.09 90

Na/PE01 0 .*NaCF 3 SO3 /V,0 13  3.12 90

Mg/PEOS -Mg (C14) 2 /V6O1 3  2.0 100

Mg/PEO8.MgC1 2 /V,0 13 2.0 100
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Figure 1. Schematic of a polymer electrolyte cell.
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Figure 2. Performance of polymer electrolyte cells.
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Figure 3. Discharge curve of a Li/V 6 0 13 cell.
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Figure 4. Discharge-charge curve of a Na/PE0 1 0 -NaI/
603cell at a constant current (51jiA/cm2 ).
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Figure 5. Cgcllc voltammograms of sodium cells at
10 mV/s (Cgcl e 3, af ter 26 hours storage at 190 OC).
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Figure 6. Cyclic voltammograms at 10 mV/s of magnesium
electrodes with respect to magnesium ref. electrodes.
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Figure 7. Discharge-charge curves of magnesium cells
at a constant current ( 16.7 jiA/CM2 )
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